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Abstract

In active constrained layer (ACL) treatments, a layer of viscoelastic material is bonded to the
host structure and constrained by an actuator. Since several mechanisms simultaneously damp vibrations
in ACL treatments, quantifying these mechanisms is essential to understand and optimise these
treatments. Several approaches in the literature quantify ACL damping mechanisms. However, these
approaches do not take into account the reduction of input power into the structure that can be induced by
the actuator, although it is known that this reduction is an important mechanism in treatments based on
active control.
This paper proposes an approach that allows quantification of all the damping mechanisms of ACL

treatments. In this approach, three indices quantify the efficiency of the three identified damping
mechanisms: the shearing of the viscoelastic layer in open loop, the increase of shearing in the viscoelastic
layer due to the motion of the actuator, and the decrease of total input power into the structure due to the
forces applied by the actuator through the viscoelastic layer. The sum of these two last indices quantifies the
efficiency of the active actions, and the sum of all three indices quantifies the total efficiency of the ACL
treatment.
In order to implement the approach, a wave approach model of beams treated with ACL is selected from

the literature and is experimentally validated. The model is used to find numerically the control voltage
optimising the efficiency of the active action, and to calculate the resulting quantification indices for the six
first modes of partially or fully treated beam. Results indicate that with a high shear modulus of the
viscoelastic material, the optimum control voltage is lower and less sensitive to changes of the stiffness that
might occur with temperature variations. A high shear modulus also leads to a better complementarity
see front matter r 2004 Elsevier Ltd. All rights reserved.
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between the active and passive frequency of the ACL treatment, resulting in a broader effective frequency
range. The effect of the forces applied to the structure is to minimise the total input power rather than to
maximise the absorption of power by the actuator, suggesting that control laws ensuring absorption of
energy by the actuator (and thus the stability of the control) might be suboptimal in terms of vibration
reduction. It can be concluded that the quantification indices presented in this work are a powerful tool to
get insight into the damping mechanisms of ACL.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Active constrained layer (ACL) treatments have been extensively investigated during the last
decade. Several configurations of ACL have been proposed. The fundamental principle of these
designs is to reduce vibrational energy simultaneously by dissipation when shearing a constrained
viscoelastic layer, and by the action of an actuator. In the typical configuration shown in Fig. 1,
the viscoelastic layer is sandwiched between the structure and the actuator. If the actuator is
properly driven, it increases the shearing of the viscoelastic layer and thus the dissipation of
energy. In the following, this mechanism will be referred to as ‘‘material damping’’. The actuator
also applies forces to the host structure, further controlling the vibration. This combination of
active control and material damping is the advantage of ACL treatments, because active control is
easier to implement at low frequencies, while viscoelastic materials are more efficient at high
frequencies. In addition, the presence of material damping adds stability to the system, so that the
efficiency of the active control can be improved.
As explained above, the different damping mechanisms simultaneously reduce vibrations

in ACL treatments. To be able to optimise these treatments, it is necessary to understand
their physical behaviour, and to quantify the different mechanisms involved in the damping
process.
An attempt in this direction has been made by Liao and Wang [1], who investigated the

influence of viscoelastic material properties on the performance of the ACL treatment. They used
a finite-element formulation, together with the Golla–Hughes–McTavish method [2,3], to derive a
time-domain model for a beam treated with ACL and excited with broadband noise. In Liao’s
paper, cost functions associated with the vibration suppression ability and control effort were
used to derive three indices. The first one represents the efficiency of the treatment in open-loop
configuration, i.e. when no control voltage is sent to the actuator. The second index quantifies the
effect of the viscoelastic layer on the force transmission between the actuator and the structure. It
is based on the comparison between the ability of the actuator supplied with a DC voltage to
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Host structure
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Fig. 1. Principle of active constrained layer.
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deflect the beam, in the presence and in the absence of the viscoelastic layer. The third index
represents the efficiency of the treatment in closed-loop configuration, i.e. when the active control
system is switched on. To derive it, the closed-loop vibration suppression ability is compared with
the open-loop vibration suppression ability when the damping of the viscoelastic layer is set to
zero, and the difference is normalised by the control effort. This approach allowed the authors to
map the parameters of the viscoelastic layer for which the ACL treatment outperforms the pure
active control treatment (the treatment with the actuator directly bonded to the structure).
However, it does not make it possible to quantify each mechanism separately when the treatment
is made active. Therefore the influence of, e.g. the control voltage on each mechanism could not be
investigated.
A different approach is based on power considerations. Shen [4] showed that the power input

by the external forces applied to a structure treated with ACL, is dissipated simultaneously by the
shearing of the viscoelastic layer and by the absorption of energy at the actuator. He proposed,
simultaneously as Baz [5] a control law ensuring that energy is dissipated by the actuator and thus
guaranteeing stability of the control. In another article, Baz [6] derived an expression quantifying
the passive loss factor from the power dissipated in the viscoelastic layer. Similarly, an active loss
factor was derived from the power absorbed by the actuator, and the total loss factor of the
system was the sum of both. This approach was used by several authors to optimise the design of
ACL treatments [7–10].
However, it does not take into account the change of impedance of the structure that

can be the result of the actuator action, although it is known that the change of impedance,
and thus of input energy from external sources, is an important mechanism of active
control [11]. In fact, Brennan et al. [12] showed that on a beam with primary and secondary
forces, minimising the total input power (i.e. the input power from both sources) is a better
strategy than maximising the energy absorption by the secondary forces. This minimisation
cannot be quantified by a loss factor, since the vibration reduction in this case is not due to a
dissipation of energy.
In the present work, the efficiency of all the damping mechanisms of ACL is quantified by a set

of indices, based on the kinetic energy and the power balance of the structure. Three indices
quantify the efficiency of the three identified damping mechanisms: the shearing of the viscoelastic
layer in open loop, the increase of shearing in the viscoelastic layer due to the motion of the
actuator, and the decrease of total input power into the structure due to the forces applied by the
actuator through the viscoelastic layer. The sum of these two last indices quantifies the efficiency
of the active actions, and the sum of all three indices quantifies the total efficiency of the ACL
treatment. To implement this approach, it is necessary to have a model describing structures
treated with ACL. A model based on the wave approach is used to predict the response of beams
treated with ACL. It is similar to the one derived by Baz [13,14], besides a few modifications. The
beams are resting on springs at their ends, and can be treated with ACL on part or whole of their
length. The model is validated experimentally up to 2 kHz. Using the model, two numerical
studies are made to illustrate the approach. In the first numerical study, the beam is fully treated
and the shear modulus of the viscoelastic layer, supposed to be constant with frequency, is varied.
In the second numerical study, the beam is partially treated and is suspended on soft springs at its
ends, and actual data is used for the shear modulus of the viscoelastic layer. This numerical study
highlights the effect of dissipative boundary conditions and of the frequency dependence of the
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shearing of the viscoelastic material, on the performance of the ACL treatment. In both studies,
the model is used to find numerically the control voltage optimising the efficiency of the active
action, and to calculate the resulting quantification indices for the six first modes of beams treated
with ACL. Results show that the quantification indices presented in this work are a powerful tool
to get insight into the damping mechanisms of ACL.
The derivation of the model is presented in Section 2, and its validation in Section 3. In Section

4, the indices quantifying the damping mechanisms of ACL treatments are described. A parameter
study illustrating the approach on a beam fully treated with ACL is presented in Section 5. In this
parameter study, the effect of the shear modulus of the viscoelastic layer on the different
quantification indices is investigated. Finally in Section 6, the indices are computed for a beam
partially treated with ACL and suspended on soft springs at its ends.
2. Model

Several models of structures treated with ACL have been presented in the literature. The model
presented here is based on Baz’ work [13,14], and uses a wave approach. The advantage of the
wave approach is that there is no need to make assumptions on the shape functions of the
structure. The details of the derivations that can be found in Baz’ work will not be repeated here;
the purpose of this section is to resume Baz’ model, as well as to present the modifications made
to it.
The model describes the vibrational behaviour of beams fully or partially treated with ACL.

Although it might be more interesting to focus on panels with respect to typical industrial
applications of ACL, the emphasis of this work is on understanding the physical mechanisms of
ACL, and a simple one-dimensional wave guide is well suited for this purpose. For the same
reason, no control law is included in the model; instead, the phase and amplitude of the control
voltage can be chosen freely so that it is possible to investigate their effect on the different
damping mechanisms.
The three-layers system resulting from the assembly of the beam, the viscoelastic layer and the

constraining layer, is described in Fig. 2. In the following, the subscript letters b, v and c will refer
to the base layer, the viscoelastic layer and the cover layer, respectively.
Fig. 2. The three-layers system.
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2.1. Assumptions

Several assumptions are made in the model:
�
 The classical Euler–Bernouilli assumptions apply for the base and cover layers;

�
 the deflection in normal direction to the surface is the same for all layers, i.e. no compression
with respect to the thickness occurs in any of the layers;
�
 only shear motion is assumed to take place in the viscoelastic layer. The shear angle is constant
across the depth of the viscoelastic layer;
�
 only bending waves are assumed to propagate in the base and cover layers.

2.2. The wave equation

The wave equation of the three-layers system can be obtained either by writing the
equilibrium of forces and moments for each layer [13], or by using Hamilton’s principle
[5,4] (the reader is referred to the literature for the detail of the derivation). The wave equation is
given by

q6w
qx6

� gð1þ Y Þ
q4w
qx4

þ
r
Dt

q2 €w
qx2

� g €w

� �
¼ 0; ð1Þ

where w is the normal displacement of the structure, and r is the density per unit length of the
three-layers system. The quantities g, Dt and Y are given by

g ¼
G

tv

1

Ebtb

þ
1

Ectc

� �
; ð2Þ

Dt ¼ EbIb þ EcIc; ð3Þ

Y ¼ b
d2

Dt

EbtbEctc

Ebtb þ Ectc

; ð4Þ

where
�
 G is the complex shear modulus of the viscoelastic layer, defined by G ¼ G0ð1þ iZÞ; where G0 is
the storage modulus and Z is the loss factor of the viscoelastic material;
�
 Eb and Ec are the elasticity moduli of the base and cover layers;

�
 Ib and Ic are the moments of inertia of the base and cover layers;

�
 tb; tv and tc are the thicknesses of the layers;

�
 the width of the beam is b;

�
 d ¼ tv þ ðtb þ tcÞ=2 is the distance between the neutral lines of the base and cover layers.

An interesting interpretation of the variables Dt; g and Y has been given by Ungar [15] as
follows: if k is the wave number of a prescribed bending wave on the beam, it can be shown that
g=k2 is proportional to the ratio of a flexural wavelength to the distance within which a local shear
disturbance decays to 1=e of its value. Thus, g=k2 is a measure of how well the viscoelastic layer
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couples the flexural motions of the two elastic substructures. Also, one can show that the effective
complex flexural rigidity D of the composite structure is given by

D ¼ Dt 1þ
w�

1þ w�
Y

� �
; ð5Þ

where � denotes the complex conjugate, and w ¼ g=k2: For w ¼ 0; the composite flexural rigidity is
then equal to the sum of flexural rigidities of the base and cover layers, as if they were
unconnected. For large w; D tends toward Dtð1þ Y Þ; which can be shown to correspond to the
flexural rigidity of the composite if the viscoelastic layer has a very large shear stiffness (its
Young’s modulus still remaining negligible). Thus, one may also interpret the geometric
parameter Y as

1þ Y ¼
Dw!1

Dw!0
¼

Dcoupled

Duncoupled
: ð6Þ

2.3. Wave approach formulation

The solution is assumed to have the form of a wave

wðx; tÞ ¼ W ðxÞejot ¼ Cedxejot; ð7Þ

where d is the wavenumber and o is the radian frequency. Inserting this expression into Eq. (1)
yields

l6 � gð1þ Y Þl4 �
r
Dt

o2l2 þ
r
Dt

go2 ¼ 0; ð8Þ

where l is the differential operator with respect to x. This equation has six roots �d1; �d2 and
�d3; given by

d21 ¼ g1 þ g2 þ
g

3
1þ Yð Þ; ð9Þ

d22 ¼ �
g1 þ g2

2
þ j

ffiffiffi
3

p

2
ðg1 � g2Þ þ

g

3
ð1þ Y Þ; ð10Þ

d23 ¼ �
g1 þ g2

2
� j

ffiffiffi
3

p

2
ðg1 � g2Þ þ

g

3
ð1þ Y Þ; ð11Þ

where

g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
x2
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x31
27

þ
x22
4

s
3

vuut
; g2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
x2
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x31
27

þ
x22
4

s
3

vuut
ð12Þ

and

x1 ¼ �
ro2

Dt

� 1
3

g2ð1þ Y Þ
2; x2 ¼ g

ro2

Dt

� 1
3

gð1þ Y Þ
ro2

Dt

�
2

27
g3ð1þ Y Þ

3: ð13Þ
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Inserting these roots into Eq. (7) leads to

W ðxÞ ¼ C1e
d1x þ C2e

�d1x þ C3e
d2x þ C4e

�d2x þ C5e
d3x þ C6e

�d3x; ð14Þ

where the six constants C1–C6 are to be determined. To avoid numerical problems on
implementation, Eq. (14) is rewritten

W ðxÞ ¼ C1e
�d1ðL�xÞ þ C2e

�d1x þ C3e
�d2ðL�xÞ þ C4e

�d2x þ C5e
�d3ðL�xÞ þ C6e

�d3x; ð15Þ

where L is the position of the end of the treatment. In this way, very large values of the
exponentials with positive argument are avoided.

2.4. Boundary conditions

In the following, the cases of a fully treated beam and of a partially treated beam are considered
(see Fig. 3). In both cases, the beam is resting at its ends on springs of stiffness K1 and K2: If the
springs are sufficiently soft, the beam can be considered freely suspended above the resonance
frequencies of the resulting mass–spring system. The advantage of this configuration over a
free–free one, is that the amplitude of the rigid body modes will have a finite amplitude. If a
control law is to be implemented, this will remove the problem of having ‘‘infinite’’ amplitudes at
very low frequencies. This configuration is also preferred over a cantilever one, because an ideal
clamped boundary condition is difficult to realise in practice, while spring mounting is easy to
implement.
Mass loading effects are included in the model, so that it is possible to take into account the

weight of measuring equipment, represented by two masses M1 and M2 at the two ends of the
beam.

2.4.1. Fully treated beam
Six equations are needed to find the six unknowns C1–C6: These equations are obtained by

writing the equilibrium of forces and moments at both ends of the beam.
The moments at the ends of the beam are vanishing

Mjx¼0 ¼ Mjx¼L ¼ 0: ð16Þ
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In this expression, M is the total moment applying on the cross-section of the three-layers system
and is given by1

M ¼ �
Dt

g

q4W
qx4

� ðY þ 1Þg
q2W
qx2

�
ro2

Dt

W � Y
g

d
�p

� �
: ð17Þ

In this equation, �p is the free strain induced in the active constraining layer by the control voltage
Vc; and is given by

�p ¼
d31

tc

Vc; ð18Þ

where d31 is the strain constant of the piezoelectric material.
Longitudinal forces are vanishing at both ends of the beam and thus

qUb

qx

����
x¼0

¼
qUb

qx

����
x¼L

¼ 0: ð19Þ

In this equation, Ub is defined by

ubðx; tÞ ¼ UbðxÞe
jot; ð20Þ

where ub is the longitudinal displacement of the neutral line of the base beam (see Fig. 2). The
derivative of Ub is given by

qUb

qx
¼ �

Dt

Kbbd

1

g

q4W
qx4

� Y
q2W
qx2

�
ro2

Dtg
W �

Y

d
�p

� �
: ð21Þ

At the position x ¼ L; the transversal force V applied to the cross-section of the three-layers
system is the sum of the force FK2

applied by the spring and of the force FM2
applied by the mass

of measuring equipment:

V jx¼L ¼ FK2
þ FM2

; ð22Þ

where

V ¼ �
Dt

g

q5W
qx5

� gð1þ Y Þ
q3W
qx3

�
ro2

Dt

qW

qx

� �
; ð23Þ

FK2
¼ �K2W ðLÞ; ð24Þ

FM2
¼ M2o2W ðLÞ: ð25Þ

At x ¼ 0; the external force F ext also has to be taken into account

�V jx¼0 ¼ FK1
þ FM1

þ F ext; ð26Þ

with

FK1
¼ �K1W ð0Þ; ð27Þ
1The reader is referred to Ref. [13] for the derivation of the equation above.
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and

FM1
¼ M1o2W 0ð Þ: ð28Þ

In Eq. (26), the transversal force V is written with a minus sign. This is because forces and
moments, by convention, are taken on the right-hand side of elements of the beam. But at x ¼ 0; it
is the force applied to the left-hand side of the element that has to be taken into account.
Inserting Eq. (15) into the six equations given in Eqs. (16), (19), (22) and (26), leads to the

following matrix equation:

A1e
�d1L A1 A2e

�d2L A2 A3e
�d3L A3

Q1e
�d1L Q1 Q2e

�d2L Q2 Q3e
�d3L Q3

R1e
�d1L R1 R2e

�d2L R2 R3e
�d3L R3

B1 B1e
�d1L B2 B2e

�d2L B3 B3e
�d3L

Q1 Q1e
�d1L Q2 Q2e

�d2L Q3 Q3e
�d3L

R1 R1e
�d1L R2 R2e

�d2L R3 R3e
�d3L

2
666666664

3
777777775

C1

C2

C3

C4

C5

C6

0
BBBBBBBB@

1
CCCCCCCCA

¼

F ext

�
btEbEcd31

EbtbþEctc
Vc

DtY
d

d31

tc
Vc

0

�
btEbEcd31

EbtbþEctc
Vc

DtY
d

d31

tc
Vc

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð29Þ

In this expression

Ai ¼ �ð�nÞ2Pi þ M1o2 � K1; i ¼ 1; 2; 3; ð30Þ

Bi ¼ �ð�nÞ2Pi � ðM2o2 � K2Þ; i ¼ 1; 2; 3; ð31Þ

where n is the number of the column in which Ai and Bi appear. Also,

Pi ¼
Dt

g
d5i � g 1þ Yð Þd3i � di

ro2

Dt

� �
; ð32Þ

Qi ¼ �
Dt

dg
d4i � gYd2i �

ro2

Dt

� �
; ð33Þ

Ri ¼
Dt

g
d4i � g 1þ Yð Þd2i �

ro2

Dt

� �
; ð34Þ

where i takes the values 1,2,3.
Note that all terms containing the control voltage Vc have been passed to the right-hand side of

Eq. (48). In this way, the control voltage sent to the actuator is considered as an external
excitation and can be chosen to be any value.
2.4.2. Partially treated beam
As described in Fig. 3, the beam is now treated with ACL between the positions x ¼ L1 and L2:

The treated portion of the beam is referred to as section 2, while the bare portions are referred to
as sections 1 and 3. In the following, the subscript numbers 1, 2, and 3 will refer to the different
sections of the beam.
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As a difference from Baz’ model [14], the longitudinal waves in sections 1 and 3 of the beam are
not considered, and only bending motion is assumed to take place in these sections. This is
consistant with the assumption that only bending waves are propagating in the base and cover
layers of the three-layers system. Such an assumption is realistic because longitudinal waves
generally occur at frequencies much higher than those of bending waves. Accordingly, sections 1
and 3 of the beam are described with Euler–Bernouilli’s theory. The transversal displacement in
these sections is assumed to have the form

w1;3ðx; tÞ ¼ W 1;3ðxÞe
jot ¼ Ce�kxejot ð35Þ

and obeys

W 1ðxÞ ¼ C7e
�kðL1�xÞ þ C8e

�kx þ C9e
jkx þ C10e

�jkx ð36Þ

in section 1 of the beam, and

W 3ðxÞ ¼ C11e
�kðL�xÞ þ C12e

�kx þ C13e
jkx þ C14e

�jkx ð37Þ

in section 3 of the beam. In Eqs. (36) and (37), the wavenumber of bending waves is k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rbo2=EbIb

4
p

(rb is the density of the base beam). The transversal displacement W 2 in section 2 of
the beam obeys Eq. (15), as in the case of the fully treated beam.
Fourteen boundary and continuity conditions are necessary to solve the unknowns C1–C14:
In sections 1 and 3 of the beam, the transversal forces V1 and V3 at the ends of the beam obey

V1jx¼0 ¼ �FK1
� FM1

� F ext; ð38Þ

V3jx¼L ¼ FK2
þ FM2

; ð39Þ

where

Vi ¼ �EbIb
q3W i

qx3
; i ¼ 1; 3 ð40Þ

and FK1
; FK2

; FM1
and FM2

are the same as in Eqs. (24)–(25) and (27)–(28). The moments M1 and
M3 obey

M1jx¼0 ¼ M3jx¼L ¼ 0; ð41Þ

where

Mi ¼ EbIb

q2W i

qx2
; i ¼ 1; 3: ð42Þ

The boundary conditions at x ¼ 0 and L result in four equations, therefore ten equations at the
positions x ¼ L1 and L2 are necessary. Eight of them are given by the continuity of the variables
corresponding to bending motion, i.e. the continuity of deflection,

W 1jx¼L1
¼ W 2jx¼L1

; W 2jx¼L2
¼ W 3jx¼L2

; ð43Þ



ARTICLE IN PRESS

H. Illaire, W. Kropp / Journal of Sound and Vibration 281 (2005) 189–217 199
bending angle,

qW 1

qx

����
x¼L1

¼
qW 2

qx

����
x¼L1

;
qW 2

qx

����
x¼L2

¼
qW 3

qx

����
x¼L2

; ð44Þ

transversal forces,

V1jx¼L1
¼ V2jx¼L1

; V2jx¼L2
¼ V3jx¼L2

; ð45Þ

and moments,

M1jx¼L1
¼ M2jx¼L1

; M2jx¼L2
¼ M3jx¼L2

; ð46Þ

have to be fulfilled. In the expressions above, the moment M2 and the transversal force V2 in the
treated section are the same as M and V in Eqs. (17) and (23).
The boundary conditions given by Eqs. (43)–(46) are different to those given by Baz [14],

where boundary conditions are given by the continuity of derivatives of W until the
fourth order. However, assuming the continuity of forces and moments is a more
physical approach. Note that at the junctions x ¼ L1 and L2; the moments and forces in
sections 1 and 3 have to be equalised with the moments and forces applied to the
whole cross-section of the treated part. This is because the three-layers system is treated as a
single layer with equivalent properties.
The two last equations are given by the boundary conditions applied to the cover beam. At

x ¼ L1 and L2; the stresses in the longitudinal direction vanish

qUc

qx

����
x¼L1

¼ 0;
qUc

qx

����
x¼L2

¼ 0: ð47Þ

The 14 boundary conditions given in Eqs. (38)–(41), (43)–(46) and (47), together with Eqs. (15),
(36) and (37), lead to the following matrix equation:

AC ¼ F; ð48Þ

where C is a vector containing the 14 unknowns C1–C14; and A and F are given in the appendix.
2.5. Derivation of the field variables

Once all the wave amplitudes C1–C14 have been derived, the deflection of the beam can be
obtained using Eqs. (15) and (36)–(37). The other field variables can be derived by using the
equations resulting from the equilibrium of forces and moments on the three-layers construction.
Among the important field variables are the shear strain g; given by

g ¼
Dt

Gbdg

q5W
qx5

� gY
q3W
qx3

�
ro2

Dt

qW

qx

� �
; ð49Þ

and the longitudinal displacement of the base beam Ub given by

Ub ¼ �
Dt

Ebtbbdg2
q5W
qx5

� gY
q3W
qx3

�
ro2

Dt

þ Yg2
� �

qW

qx
�

g2Y

d
�px

� �
: ð50Þ
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3. Experimental validation

The models for fully and for partially treated beams were experimentally validated. The
experiments were made in steps of increasing complexity: first on untreated beams, then on beams
treated with passive constrained layer (PCL) and finally on beams treated with ACL. In each
experiment, the driving point mobility was measured at one end of the beam. In all the
experiments, the properties of the base beam, described in Table 1, were the same, and the beam
was resting on springs at its ends. These springs were made of a piece of foam (Sylomer S80) and
their stiffness K1 and K2 were determined from the measurements.

3.1. Untreated beam

The goal of measuring an untreated beam was to check the quality and limitations of the
experimental setup. The measured driving point mobility was compared with the predictions given
by the model presented in Section 2. The results are shown in Fig. 4. The agreement between
model and measurement is excellent up to 2 kHz. The experimental setup can therefore be used
successfully over a large frequency range. The beam suspended on springs results in a mass–spring
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Fig. 4. Driving point mobility of the untreated beam: —–, measured; - - -, calculated.

Table 1

Base beam properties

Material Length Width Thickness Young’s modulus Density

Aluminium 0.4m 0.03m 2:92� 10�3 m 69� 109 N/m2 2680 kg/m3
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system, whose resonance frequencies are made visible in Fig. 5. The driving point mobility
calculated for the free–free case is also plotted. This shows that the effect of the springs on the first
bending modes is not negligible, although the stiffness of the springs was chosen as low as
possible.
3.2. Beam with PCL treatment

In the case of beams fully or partially treated with PCL, the treatment was realised with a
damping tape manufactured by 3M (#2552). It was made of a layer of viscoelastic material
and of a layer of aluminium, whose properties are given in Table 2. The complex shear
modulus G of the viscoelastic material is a function of both frequency and temperature. The data
for G was provided by J. Rongong, who extracted it from the normograph given by 3M, and is
shown in Fig. 6 for a temperature of 20�C: As shown in Figs. 7 and 8, the agreement between
measurements and theoretical predictions is excellent, both in the case of fully and of partially
treated beams.
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Fig. 5. Driving point mobility of the untreated beam (zoom at low frequencies): —–, measured; - - -, calculated; - � -,

calculated with K1 ¼ K2 ¼ 0:

Table 2

PCL treatment properties

Material Width Thickness Young’s modulus Density

Aluminium 0.03m 0:254� 10�3 m 69� 109 N/m2 2700 kg/m3

3M ISD 112 0.03m 0:127� 10�3 m See Fig. 6 1130 kg/m3
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Fig. 7. Driving point mobility of the fully treated beam: —–, measured; - - -, calculated.
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3.3. Beam with ACL treatment

The experiments were only made on a beam partially treated with ACL, because of the limited
size of available piezoceramic plates. The constraining layer was made of an actuator (PIC 255,
manufactured by PI) whose properties are given in Table 3. A layer of viscoelastic material was
sandwiched between the actuator and the base beam; it was made of the same material as the one
used in PCL treatments, see Table 2. The ACL patch was positioned slightly off-centre on the
beam, starting at x ¼ 0:198m:
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Fig. 9. Mobility of a beam treated with ACL and excited with a shaker: —–, measured; - - -, calculated.

Table 3

Actuator properties

Material Length Width Thickness Young’s modulus Density d31

PZT 0.05m 0.03m 5� 10�4 m 62:1� 109 N/m2 7800 kg/m3 �18� 10�13 m/V
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The validation of the model in the case of an ACL treatment makes use of the linearity of the
system under consideration. The driving point mobility of the beam, when only a point force is
applied to one of its ends, is presented in Fig. 9. The response of the beam at the same point when
it is excited only by the actuator (the shaker being still connected and short-circuited), is shown in
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Fig. 10. In this case, the reference used to calculate the transfer function is the voltage sent to the
actuator. In both cases, good agreement is reached between theoretical and experimental results.
Therefore, the response of the closed-loop system can be accurately predicted, provided that the
amplitudes and phases of the applied force and voltage are known.
4. Quantification of damping mechanisms

Quantifying the different damping mechanisms involved in ACL treatments is essential in order
to optimise them. In this work, the efficiency of these mechanisms is quantified by a set of indices.
Their definitions involve the kinetic energy, the total power input into the structure, and the
power dissipated in the shearing of the viscoelastic layer and in the other dissipation mechanisms
that might be present on the structure.
When a control voltage is applied to the actuator, the efficiency of the treatment will, hopefully,

increase, resulting in a reduction of the vibrational energy in the structure. This reduction can be
quantified by comparing the level of energy in the structure, with and without control. The kinetic
energy is chosen since it characterises the vibrational level of the structure. Therefore an index
Ractive; in dB, is defined as

Ractive ¼ 10 log
Ekin;passive

Ekin;active
; ð51Þ

where Ekin is the time-averaged kinetic energy of the structure, given by

Ekin ¼
rL

2
o2

Z L

0

W 2
rms dx; ð52Þ
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where the subscript rms refers to the root mean square value. This index quantifies the efficiency
of the active control.
The reduction of kinetic energy quantified by Ractive is due both to the increased efficiency of the

energy dissipation mechanisms in the structure, and to the bending moments applied to the
structure by the actuator. The first of these mechanisms can be quantified by comparing the
efficiency of the dissipation mechanisms to dissipate kinetic energy, with or without control. This
results in an index Rlost defined as

Rlost ¼ 10 log
ðPlost=EkinÞactive

ðPlost=EkinÞpassive
; ð53Þ

where Plost is the power lost in the mechanisms of dissipation of energy. In the case of a beam
suspended on springs like the one described in Section 2.4,

Plost ¼ Pshear þ Psprings; ð54Þ

where Pshear is the power dissipated in the shearing of the viscoelastic layer, and Psprings is the
power dissipated in the suspension springs. Pshear is given by

Pshear ¼
btv

2

Z L2

L1

Reft_g�gdx; ð55Þ

where g is the shear strain in the viscoelastic layer, given in Eq. (49), and t ¼ Gg is the shear stress.
Psprings is given by

Psprings ¼
1
2
RefFK1

_w�ð0Þg þ 1
2
RefFK2

_w�ðLÞg; ð56Þ

where FK1
and FK2

are the forces applied by the suspension springs at x ¼ 0 and L; as defined in
Eqs. (24) and (27).
The bending moments applied by the actuator to the structure can have two effects: they can

absorb energy from the structure, or they can change the impedance of the structure and therefore
the power input by other external forces. In both cases, the result is a change of the total power
input Pin into the structure. Therefore, the increase of efficiency due to the bending moments can
be quantified by comparing the total power input into the structure, with and without control.
Accordingly an index Rin is defined as

Rin ¼ 10 log
Pin;passive

Pin;active
: ð57Þ

The power input Pin is the sum of the power input by the external forces, Pext; given by

Pext ¼
1
2
RefF _W

n
ð0Þg; ð58Þ

and of the power input by the actuator, Pa; given by

Pa ¼

Z L2

L1

btc
1
2
RefsaðxÞ_e�ðxÞgdx: ð59Þ

Note that Pa can be negative if the actuator is absorbing energy. In the expression above, sa is the
stress in the actuator due to the voltage applied to the actuator: sa ¼ �Ec�p ¼ �d31Vc=tc:
Assuming that the control voltage Vc is constant over the electrodes of the actuator, Eq. (59) can
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be rewritten

Pa ¼ 1
2

btc Re saðxÞ

Z L2

L1

_e�ðxÞdx

� �
¼ 1

2
btc Refsa½ _UðL2Þ � _UðL1Þ�g: ð60Þ

If the dissipation of energy in the base and cover layers is neglected, and under stationary
conditions, the power input into the system Pin is equal to the dissipated power Plost; accordingly,

Rin þ Rlost ¼ 10 log
ðPlost=EkinÞactive

ðPlost=EkinÞpassive

Plost;passive

Plost;active

 !
¼ Ractive: ð61Þ

In other words, the increase of efficiency of the treatment due to the actuator is the sum of the
efficiency resulting from the decrease of input power into the structure, and of the increased
efficiency of the energy dissipation in the shearing of the viscoelastic layer.
To complete the picture, it is necessary to quantify also the efficiency of the treatment in passive

configuration. This efficiency can be quantified simply by the conventional loss factor

Z ¼
Pshear

2pErev
;

where Erev is the reversible energy of the system. Alternatively, an index Rpassive can be defined as

Rpassive ¼ 10 log
Ekin

Ekin0

� �
passive

; ð62Þ

where Ekin0 is the kinetic energy calculated with the loss factor of the viscoelastic layer set to zero.
The kinetic energy Ekin0 depends on the loss factor of the base and cover beams. Nevertheless, the
advantage of this index is that it is possible to compare it with the other indices, and to define the
total efficiency of the ACL treatment simply as the sum of the passive efficiency and of the active
efficiency:

Rtot ¼ 10 log
Ekin;passive

Ekin0;active

� �
¼ Rpassive þ Ractive: ð63Þ

In other words, the overall efficiency of the treatment is the sum of its efficiency in the passive
configuration, and of the efficiency added by the motion of the actuator.
5. Parameter study on a beam fully treated with ACL

To illustrate the approach proposed in the previous section, a parameter study is made on a
beam fully treated with ACL. This study is investigating the repartition of the damping
mechanisms, when the control voltage is chosen to maximise the efficiency of the active control.
Results are obtained for different modes and different values of the shear modulus G of the
viscoelastic layer.
For the sake of simplicity, the study is made on a freely suspended beam, so that the only

mechanism of dissipation of energy is the shearing of the viscoelastic layer. The properties of the
beam, the viscoelastic layer and the PZT actuator are the same as in the experimental study (see
Tables 1–3 in Section 3), except for the shear modulus G, which is supposed to be independent of
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frequency. The loss factor associated with G is fixed to 1, and the storage modulus is varied
between 50 and 8000kN=m2:
The amplitude of the excitation force at the position x ¼ 0 is fixed to 1N. The amplitude and

phase of the control voltages maximising the indices Rin; Rlost and Ractive are obtained by using a
numerical optimisation. The indices Rpassive; Rin; Rlost; Ractive and Rtotal are calculated for the
selected values of the control voltage and for the different values of the shear modulus, in the
frequency range up to 2.5 kHz. To reduce the amount of data and for easier interpretation, the
results are integrated over each mode’s range of frequency. As an example, the integration of Rlost

for a given mode n is done as follows

Rlost;n ¼ 10 log
ð
R f max;n

f min;n
Plost df =

R f max;n
f min;n

Ekin df Þactive

ð
R f max;n

f min;n
Plost df =

R f max;n
f min;n

Ekin df Þpassive

; ð64Þ

where f min;n and f max;n are the frequency limits associated with mode f. These limits are
determined from the minima preceding and following the resonance of mode n, in the curve Pext

calculated for the open-loop configuration. The integration for the other indices are done similarly
to Eq. (64).
In the case of a fully treated beam, the coverage of the actuator is symmetrical; thus only odd

modes can be controlled. With the parameters chosen in this work, data for the first, third, fifth
and seventh modes are obtained.
In Fig. 11, Rpassive and the optimised values of Ractive and Rtotal are presented for the different

values of G and the different modes. It shows that Rpassive reaches at least 15 dB, except for the first
mode. This is an expected result, since in practice passive treatments with viscoelastic materials
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Fig. 11. Indices calculated with the control voltage optimising Ractive: - - -, Rpassive; � � � � �; Ractive; —–, Rtotal:
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are generally less efficient at low frequencies. Results also show that Ractive is higher when Rpassive

is low. This shows that the effects of active control and of material damping in ACL treatment
complement each other, since the active control improves the treatment when the passive damping
is the least efficient. When designing the treatment, this means that the parameters should be
chosen so that the active control is efficient at low frequencies, where it is easier to implement it,
and the attenuation of the high frequencies is left to the passive damping. With this purpose, it is
better to choose a high value of the shear modulus of the viscoelastic layer. This approach is
different to the one proposed by most authors, who first choose the material and geometric
parameters of the treatment to optimise the passive damping characteristics first, and then design
the control system to optimise the active damping. This could lead to a treatment with better fail-
safe characteristics, but with suboptimal efficiency. Fig. 11 also indicates that a stiff viscoelastic
layer leads to a high value of Ractive; which is an additional argument for choosing a high shear
modulus for the viscoelastic layer.
Fig. 12 shows the contribution of Rin and Rlost to Ractive: Decreasing the shear modulus G has

opposite effects on Rin and Rlost: Rin decreases for smaller G, which is logical since the forces
transmitted to the host structure are smaller if the viscoelastic layer is soft, while Rlost increases.
Rin can be negative, meaning that when the active control is optimised, the power input into the
structure can be increased rather than decreased. The reason for this appears when looking at the
amplitude and phase of the control voltages optimising the different active control mechanisms
(see Figs. 13 and 14). The control voltages optimising Rin and Rlost are different from each other,
especially for high modes and low values of the shear modulus. These figures also show that with
the parameters considered in this study, the voltage optimising Ractive is close to the one
optimising Rlost: In other words, to actively control the kinetic energy of the beam, it is more
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efficient in the present case to improve the material damping than to try to reduce the input power
into the beam.
In addition, Figs. 13 and 14 indicate that if the value of the shear modulus is increased, the

curves representing the amplitude and phase of the control voltage become flatter. This means
that if a stiff viscoelastic layer is chosen, its shear modulus does not need to be accurately known
to find the control voltage optimising the performance of the ACL treatment. Furthermore, this
performance is less sensitive to changes of the shear modulus that might be caused by temperature
variations.
It is interesting to get further insight into the reduction of the total input power Pin and to know

if this reduction is due to an absorption of power by the actuator, or to a reduction of the power
input by external sources of excitation. When the control voltage is selected to maximise Rin (i.e to
minimise the total power input Pin), it appears that the actuator does not feed any power into the
structure, and the power input from external sources is decreased (see Fig. 15). If instead the
control voltage is chosen to maximise Ractive (i.e. to minimise the kinetic energy in the structure),
the power input from external sources is strongly reduced and is even close to zero for the first
mode, and the actuator inputs power into the structure (see Fig. 16). This power input can be very
small, in the case of the first mode, but becomes very large at high modes and for low values of the
shear modulus. In both cases, optimising Rin or Ractive does not lead to an absorption of power by
the actuator. Thus, optimising the active control does not lead to a maximisation of the power
absorbed by the actuator. This could indicate that the control law proposed by Baz [5] and by
Shen [4], which ensures absorption of energy by the actuator, might guarantee the stability of the
control but not its best performance.
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6. Numerical study on a beam partially treated with ACL

The indices presented in Section 4 are computed for a beam suspended on springs and partially
treated with ACL. The characteristics of the beam, the suspension springs and the ACL treatment
considered in this numerical study are the same as the ones used in the experiments described in
Section 3.3. As a consequence, the ACL treatment covers only a small portion of the beam, the
shear modulus of the viscoelastic layer varies with frequency and energy is dissipated at the
boundaries of the beam. This allows the investigation of the damping mechanisms of ACL
treatments in conditions approaching situations found in reality.
The ACL patch starts at 19.8 cm from the excited end of the beam and is 5 cm long, which

corresponds to a position slightly off-centre of the beam. The complex stiffnesses of the spring,
estimated from the experimental data presented in Section 3.3, are K1 ¼ 2; 9 ð1þ 0:28iÞ kN/m and
K2 ¼ 2; 5 ð1þ 0:31iÞkN/m.
The results are computed in the frequency range up to 2 kHz, and are integrated over each

mode’s range of frequency as described in Eq. (64). The amplitude of the excitation force at the
position x ¼ 0 is fixed to 1N.
It is interesting to note that the resulting curves, given in Figs. 17–23, are not smooth as for Rin

and Rlost; but their sum Ractive is smooth, indicating that the unevenness cancels out. The reason
for this phenomenon is yet unclear.
Fig. 17 shows that in the passive configuration, most of the damping at low frequencies is due to

the dissipation of energy in the suspension springs. As a consequence, only little improvement is
brought by the ACL treatment in passive configuration and limited improvement is brought by
the actuator motion at these frequencies, as can be seen in Fig. 18. In the frequency range of the
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first bending resonances of the beam, the shear modulus G of the viscoelastic layer is less than
1000 kN/m2: The results of the parameter study done in the previous section showed that this is a
low value for the viscoelastic layer (see Figs. 11–16), and although the loss factor is highest in this
frequency range, the active action of the ACL treatment has little effect and the optimum control
voltage is very high (Fig. 20). This phenomenon might be stressed by the size of the actuator
which is small relative to the wavelength of the bending motion at low frequencies, and which
makes it difficult to control the beam at these frequencies.
Most of the improvement brought by the action of the actuator is due to augmented efficiency

of the shearing in the viscoelastic layer, as can be seen in Fig. 19. As a consequence, when the
control voltage is chosen to maximise Ractive; the actuator inputs a large amount of power into the
beam and Rin is negative. The effect of the actuator action on the efficiency of the dissipation of
energy in the suspension springs is negligible, as shown in Fig. 23.
7. Conclusion

A model of a beam partially or fully treated with ACL was presented. It is based on the wave
approach and is a modified version of Baz’ model [13,14]. The model was experimentally validated
and excellent agreement was reached up to 2 kHz. No control law is included in the model, so that
the control voltage sent to the actuator can be chosen to be any value, and its effect on the
damping mechanisms can be studied.
An approach to quantify separately the efficiency of the damping mechanisms of ACL

treatments was proposed. A series of indices, based on the kinetic energy of the structure and on
the power flows in and out of the structure, were defined. The index quantifying the total
efficiency of the treatment is the sum of two other indices, one quantifying the efficiency of the
treatment in open-loop, and the other, the efficiency added by the motion of the actuator. This
latter is the sum of two indices. One quantifies the reduction of input power into the structure due
to the active control; the other quantifies the increase of efficiency of the dissipation of energy in
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the shearing of the viscoelastic layer or in other damping mechanisms in the structure, e.g. at the
boundaries.
This approach is illustrated with a parameter study done on a freely suspended beam, fully

treated with ACL. In this study, the shear modulus of the viscoelastic layer, assumed to be
constant over frequency, is varied. Although this parameter study is not comprehensive,
interesting conclusions can be drawn from the results. It shows that the passive and active
components of ACL complement each other, since the active control can compensate a low
efficiency of the passive control. This suggests that it is desirable to design the treatment so
that the material damping focuses on a given frequency range while the active control is in
charge of the remaining frequencies. Also, the effect of the absorption of power is small or null
when the efficiency of the active control, or of the reduction of input power, are optimised.
This indicates that the control law proposed by Baz [5] and by Shen [4], which ensures absorption
of energy by the actuator, might guarantee the stability of the control but not its best
performance.
The study also suggests that a high shear modulus of the viscoelastic layer seems preferable

for several reasons. A stiff viscoelastic layer leads to a high overall efficiency of the ACL
treatment; in the same time, the performance of the active actions is less sensitive to uncertainties
of the shear modulus, and thus to temperature variations; lastly, choosing a stiff viscoelastic
layer allows the application of the passive damping to the highest frequencies in the range of
interest; this way, the active control is directed to the lower frequencies, where it is easier to
implement.
The indices are also computed for a beam partially treated with ACL, and suspended on

soft springs at its two ends. The results of this study demonstrate that with the chosen
parameters, the viscoelastic layer is very soft at low frequencies (or high temperature) and the
efficiency of the ACL treatment is limited. This suggests that separating the passive and active
components of the ACL treatment, by bonding the actuator directly to the beam and using a
passive constrained layer as proposed by Lam et al. [16] might be a better solution, because in this
case the action of the actuator does not depend on the temperature and frequency dependence of
the viscoelastic layer. On the other hand, the studies in this work showed that most of the
improvement brought by the action of the actuator is due to an increased efficiency of the
dissipation of energy in the viscoelastic layer; this effect would not occur if the actuator is bonded
directly to the beam. This is still a matter of discussion, that the approach proposed in this work
might help to clarify.
The two studies demonstrate the usefulness of the indices proposed in this work for allowing

insight into the damping mechanisms of ACL treatments. More work is needed to compare the
conventional ACL configuration to the one proposed by Lam, to design a control strategy and to
optimise the parameters of ACL treatments.
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